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Equilibrium State of Aggregation in Suspensions 
Comprising Linear Clusters 
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The final state of aggregation in a suspension containing nonbranching, one- 
dimensional (linear) flocs is investigated. Allowing coagulation to occur at a 
finite secondary minimum of magnitude V* rather than the infinite primary 
well, it is realized that the system eventually reaches steady state where a 
relatively large number of fiocs coexist at equilibrium. It is shown that, under 
this condition, the number of flocs N expected to result is exponentially related 
to -V* and directly proportional to xfl-~0, where No is the initial number of 
individual particles in the suspension. 

KEY WORDS: Equilibrium aggregation; linear flocculation; one-dimen- 
sional clusters; secondary-well aggregation; flocculation at secondary well. 

1. I N T R O D U C T I O N  

Following Smoluchowski ' s  theories of coagulat ion,  there has appeared an 
extensive literature regarding transient size distributions (ref. 4 and 
references therein) and structural  properties of  the aggregates (refs. 1, 6, 
and 8 and references therein) undergoing flocculation. Addit ional  models of 
flocculation in the presence of  a variety of interparticle interaction energy 
curves have also been developed. Figure 1 depicts, for example, the typical 
forms of interaction energy curves that  have until recently been considered 
in most  cases. Both  represent irreversible flocculation at an infinite pr imary 
energy well. The energy barrier that  appears  in curve II  of Fig. 1 simply 
reduces the rate of coagulation.  (7~ However,  in both  situations, coagulat ion 
persists at an unsteady rate until all the particles in the suspension 
converge to eventually form one large cluster. 
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Fig. 1. Typical  in teract ion energy curves. (2) 

It is well known that under certain conditions, energy curves similar to 
that illustrated in Fig. 2 can be produced. This paper mainly focuses on 
aggregation in the presence of a secondary minimum with a finite value 
equal to V* where particle attachments occur. The dynamics of floc growth 
for this situation has been recently investigated by Dickinson, (3) who, by 
means of numerical simulations, showed that secondary wells tend to 
establish more compact clusters, as opposed to coagulation due to curves 
shown in Fig. 1. An analysis involving floc configurations at equilibrium, ~2~ 
which incorporates the ideas of statistical mechanics for structural 
considerations, firmly supports the conclusion reached by Dickinson. (3) 
This behavior is simply due to the minimization of potential energy, which, 
in principle, governs the formation of densely packed clusters. 

It should be emphasized that in systems where particles coagulate at 
finite-valued energy wells, the influence of thermal energy, characterized by 
kT, where k is the Boltzmann constant and T is the absolute temperature, 
becomes substantial in prohibiting continuous and ever-unsteady 
aggregation. Subsequently, the system is carried to a final state, where a 
relatively large number of flocs coexist in equilibrium. In what follows, an 
analysis of such a system containing flocs at steady state is presented. 
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Fig. 2. Typical interaction energy curve having a finite secondary minimum. 12) 

2. P R O B L E M  F O R M U L A T I O N  A N D  S O L U T I O N  

The interest here is to study the effects of interaction energies of the 
type shown in Fig. 2 on the final state of flocculation. Of primary concern 
is the subsequent influence that V* may have in determining the ultimate 
number of clusters at equilibrium. For  the purpose of the analysis, it is 
assumed that: 

1. The system initially holds a dilute, monodisperse suspension of No 
individual particles. 

2. Upon carefully adding a flocculant, an energy curve similar to that 
shown in Fig. 2 is produced. This therefore carries the system 
through a rapid phase of coagulation where particles attach at the 
secondary well V* while the energy barrier acts to resist entrance 
into the infinite primary well. 

3. Flocculation is allowed to continue until the system reaches 
equilibrium with the surroundings. In this final state, the solution 
contains a number of flocs equal to N, and subsequently a total of 
j interparticle contacts. As a result, the system's potential energy is 
reduced by an amount  equal to jV* in relation to its initial state. 

In consequence of the above, one may assume that the probability 
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p(N, j) of finding the final system with a total of N clusters and j inter- 
particle contacts follows the Boltzmann distribution given by 

p(N, j) = Af2(N, j) e jr (1) 

where r ( = V*/kT) is the dimensionless value of the secondary well, e jo* 
is the Boltzmann factor, A is a proportionality constant, and Q(N, j)  is the 
degeneracy or the total number of ways that are possible for the system of 
N aggregates to contain a total o f j  interparticle contacts. 

It is therefore noted that calculation ofp(N, j) requires a knowledge of 
the degeneracy (2(N, j). The task of determining O(N, j)  in general is quite 
difficult, especially when flocs of two and three-dimensions are considered. 
Consequently, this paper is restricted to analyzing one-dimensional (linear) 
aggregates, where related complications are substantially reduced. Although 
it is understood that, in view of real systems, this merely represents a 
hypothetical case, the results that are derived here may subsequently be 
extended to more complex structures. In addition, the similarity of the 
present work to polymers, where linear formations are indeed feasible, can 
lead to actual applications. 

Returning to the analytical formulation, if N represents the final 
number of clusters in the system, then 

/max 

N =  ~ n(i) (2) 
i = 1  

where i is the floc size, /max is the maximum floc size, and n(i) is the number 
of flocs with size equal to i. Also 

tmax 

No= Z in(i) (3) 
i = l  

where No is the total number of particles in the system. Furthermore, by 
restricting the aggregates to acquire linear and nonbranching formations, it 
follows that the number of interparticle contacts in a single floc of size i is 
simply equal to i - 1 .  This thereby leads to an expression for the total 
number of contacts j in the final state of the system that is given by 

/max 

j =  ~ (i-- 1) n(i) (4) 
i = 1  

which by virtue of Eqs. (2) and (3) reduces to 

j = N o - N  (5) 
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independent of/max' Eliminating j from Eq. (1) leads to 

p(N, No) --- Af2(N, No) e tN~ N)~b* (6) 

where p(N, No) denotes the probability for the system of No particles to 
reduce to a final state containing N chains. In addition, f2(N, No) 
represents the possible number of ways in which N flocs can form out of N o 
distinguishable particles. To clarify the matter, Table I serves as an example 
in order to illustrate all the possible arrangements that three distinct 
particles can acquire after flocculation. 

It is clear that, at equilibrium, the system contains N clusters, where N 
may vary within 1 <<.N<<.No. Therefore, the constant A in Eq. (6) can be 
evaluated by implementing the normalization condition given by 

NO 

p(S, No)= 1 (7) 
N--1 

Incorporating Eq. (6) into (7) results in 
NO 

1/A=e N~ ~ s No)e u(~* (8) 
N - - 1  

Substitution of the above expression into Eq. (6) gives 

NO 

p(N, No)=f2(N, No)e -u~" ~ f2(N, No)e u~* (9) 
U=l 

Since the denominator in Eq. (9) is analogous to the partition function, 
which is commonly represented by Q in statistical mechanics literature, 
then 

p(N, No) = f2(N, No)e-U~*/Q (10) 

Table I. All  Distinct Final States and Their Respective Degeneracies 
Achievable from Linear Aggregat ion of Three Particles in Suspension 

Initial state, N o = 3 All Possible Final States N s 3) 

|  

( i ) | 1 7 4  

(9 r 
(!)@| 

+ 1 @(i)@ 

3 1 

2 3 

1 3 
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where 

NO 
Q -  ~ g2(N, No)e -Nr ( l l )  

N = I  

By definition, the expected number of flocs N that is most likely to appear 
at equilibrium is 

No 

.~= ~ Np(N, No) (12) 
N--1 

which reduces to 
No 

N= ~ Ng2(N, No)e-Ui~*/Q (13) 
N = I  

after utilizing the expression for p(N, No) given by Eq. (10). By virtue of 
Eq. (1 1 ), Eq. (1 3) is rewritten as 

~= -OQ/O(~* a In Q 
Q - c~b* (14) 

Evidently, calculation of 77 strictly depends on Q, which in turn 
requires O(N, No) to be explicitly known. Derivation of the degeneracy as 
applied to this case is quite involved and therefore is not presented here. It 
is shown, however, that 

g2(N, No) = N O t . . . .  (No-N) N! ~ mB(N~ '~ (15) 
m = 0  

where 

m _ ~'N, 2N~< No (16) 
max - -  ( N  O _ N ,  2N > No 

and B(n, m) is the binomial coefficient given by 

nt 
B(n,m)=. (17) 

(n-rn)t m! 

Substituting Eq. (15) into Eq. (11) yields 

Q=No'{NN~=IY21(N, No,r *) ~ (22(m,N, No)2 -m 
m = O  

NO NO N "1 

+ Z ~'21(N , No, ~b*) ~ ~22(m , N, No)2 m t  (18) 
N = 1 + NO~2 m = 0 
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where 

and 

e Nc~* 

O~(N, No, ~b*) = (19a) 
(No - N) N! 

O2(m , IV, No) -= mB(N, m) B(No - N, m) (19b) 

It can further be shown that when No is large (N o > 1), which is typical of 
suspensions, the first double summation appearing in Eq. (18) far out- 
weighs the second one. Consequently, Eq. (18) simplifies to 

NO~2 N 

Q=No! ~ O~(N, No, O*) ~ f22(rn, N, Uo)2 " (20) 
N = I  r n = 0  

in order to give 

U = 7 7 g l n  01(N, Uo, O* ) • 02(m,X, Uo)2 -m (21) 
m = 0  

by virtue of Eq. (14). 
Realizing that, due to N o > l ,  O1 and O2 are sharply peaking 

functions, the In term in the above equation can readily be evaluated by the 
classical asymptotic approach (see, for example, ref. 5). Without going 
through the details, it can be shown that the in term acquires a maximum 
at 

N= N* = (No/2)l/2e ~*/2 (22) 

which satisfies the relation 

N O >> N* >> 1 (23) 

Therefore, substituting N* from Eq. (22) for N into Eq. (21) and differen- 
tiating with respect to ~b* leads to 

~ =  (No/2 )l/2 e-~*/2 (24) 

which again implies that N o >> N>> 1, in accordance with the inequality 
given by Eq. (23). Equation (24) is a surprisingly simple expression that 
represents the number of linear aggregates expected to form in a flocculated 
suspension that originally contained No individual particles. The influence 
of ~b*, and hence V*, is observed to be exponential. 

For the purpose of comparison, Fig. 3 illustrates the range of validity 
of Eq. (24) in relation to the exact numerical solution of Eq. (13) in con- 

822/51/3-4-16 
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, z  EXACT (Equation 13) 

ASYMPTOTIC (Equation 24) (~'= O ~  

10 10 2 1() 3 1() 4 
TOTAL PARTICLE NUMBER, No 

Fig. 3. Comparison of asymptotic and exact solutions depicting the number of flocs ~7 
expected to result from No individual particles having undergone linear flocculation. 

junction with Eqs. (15) and (18). It is evident that the asymptotic solution 
provided by Eq. (24) agrees very well with the exact solution above a cutoff 
point of .N = 7. 

The simplicity of Eq. (24) allows ~b* to be determined in terms of No 
and N. Hence, 

~b* = In (N~ 
2N ~ (25) 

so that the interaction energy can indirectly be determined by obtaining the 
ratio of initial to final concentrations or number densities No/N, given the 
total number of particles No in the system. 

3. C O N C L U S I O N S  

The problem of equilibrium aggregation as influenced by interaction 
energy curves containing finite energy wells, shown in Fig. 2, is 
investigated. Assuming that flocculation occurs at the secondary minimum 
of magnitude V*, it follows that for every interparticle contact tha t  is 
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established in the process of coagulation, the potential energy of the system 
is reduced by V*, which in turn carries the system to a lower energy state. 
As a result, Boltzmann statistics is implemented to determine the final or 
equilibrium state of the clusters in the suspension. 

Although at this stage the study is preliminary in that it essentially is 
restricted to linear and nonbranching conformations, it is foreseen that the 
model may help pave the way for predicting the equilibrium states of 
solutions containing more complex aggregates of higher dimensions. In 
addition, the similarity of the configurations considered here to those of 
linear polymers may further justify its practical applications in that field. 

It is also important to mention that the model is expected to fail when 
highly concentrated dispersions are considered. In this situation, near- 
neighbor collisions will obviously dominate. Subsequently, this would yield 
degeneracies that may best be computed using lattice theory. 
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